A Critical Look at the PMHT

DAVID F. CROUSE
MARCO GUERRIERO
PETER WILLETT

‘We combine concepts from numerous papers to provide a deriva-
tion and description of a generalized Probabilistic Multi-Hypothesis
Tracker that can track multiple targets in a cluttered environment,
utilizing multiple sensors and feature measurements, if available.
Additionally, we provide a full derivation of the algorithm, includ-
ing parts omitted or abbreviated in other work. We also provide an
improved analytic solution for the prior target-measurement prob-
abilities conditioned on the number of observations, a simplified
method of performing the maximization step of the algorithm when
multiple sensors are used, a consistent covariance approximation
of the algorithm when using multiple sensors, explore the use of
deterministic annealing to improve performance, and discuss im-

plementation difficulties.
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1. OVERVIEW

Since its creation by Streit and Luginbuhl in 1993
[60], much research has been done on the Probabilis-
tic Multi-Hypothesis Tracker (PMHT). In this paper,
we combine concepts from past works and provide a
general version of the PMHT algorithm allowing for
tracking in the presence of clutter (false alarms) and
missed detections and the utilization of classification
data, range rate information, and multiple synchronous
sensors. This version makes no changes to the basis of
the original algorithm, which is the Expectation Maxi-
mization (EM) algorithm. As a result, this generalized
PMHT algorithm may be used as an improved foun-
dation for other versions of the PMHT that build upon
or alter the basis of the algorithm, such as the Multi-
Frame Assignment PMHT (MFPMHT) accounting for
missed detections by Blanding, Willett, Streit, and Dun-
ham [7]. Being a generalized version of the PMHT, the
algorithm might be interchangeably named the PMHT
or the Multi-Sensor PMHT (MSPMHT), in line with the
naming convention of previous work.

In the subsequent sections, we derive the general
form of the PMHT algorithm while discussing imple-
mentation difficulties. In Section 2, an overview of pre-
vious contributions to the algorithm is provided. Sec-
tion 3 describes the EM algorithm, which forms the ba-
sis of the PMHT. Section 4 derives the state estimates
within the PMHT, discussing implementation issues as-
sociated with precision problems in 4.3, how and why
one might wish to include deterministic annealing to
improve performance in 4.3, what to do if each sen-
sor has a different field of view in 4.4, and out-of-
order measurement delivery in 4.5. In Section 5, we
compare the complexity of the PMHT against that of
the Joint Probability Data Association Filter (JPDAF),
which is a popular non-batch tracking algorithm.! We
describe the conditions under which the PMHT has a
lower complexity than the MSJPDAF. Section 6 ex-
plains how the PMHT, a batch algorithm, can be used
over data sequences longer than the batch. Section 7
then discusses state covariance estimation in the PMHT.
The algorithm is summarized in Section 8. Section 9
provides a simulation of the PMHT with multiple sen-
sors to verify that the covariance estimation procedure
of Section 7 provides, under certain conditions, con-
sistent estimates when multiple targets are used, and
demonstrates that deterministic annealing can signifi-
cantly improve tracker performance when using multi-
ple sensors. Section 10 summarizes the paper. The ap-
pendices provide derivations of the target-measurement
association probabilities conditioned on the observa-
tions, and the target-measurement association proba-
bilities conditioned only on the number of observa-
tions.

1t is also referred to as the Multi-Sensor JPDAF (MSJPDAF) in the
multisensor case.
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2. PREVIOUS WORK ON THE PMHT ALGORITHM

The Probabilistic Multi-Hypothesis Tracker (PMHT)
is a linear-complexity, EM algorithm based, batch target
tracking algorithm for use in tracking multiple targets
in the presence of clutter when the target-measurement
associations are unknown.”? Having a memory of the
last N scans of data, it attempts to find the maximum a
posteriori estimate of the target state in the current scan.
This is similar to a later algorithm by Pulford and Logo-
thetis [50], which estimates the target-measurement as-
sociations under different measurement models. Being
a batch algorithm, it can easily handle delayed measure-
ments, which may simply be added to the batch when
they arrive, as was mentioned by Efe, Ruan and Willett
[19]. For use as a practical tracker, which must produce
track estimates before receiving a full N scans of data,
the PMHT can be run at each step on a growing window
until a full N scans of data have been acquired, at which
point the window slides. This growing and sliding win-
dow has been shown to be more effective than other
methods by Willett, Ruan, and Streit [70].

The first EM based tracking algorithm was a max-
imum-likelihood (ML) batch algorithm by Avitzour [2].
This tracker had a high complexity, requiring the calcu-
lation of all target-measurement association probabili-
ties. A later algorithm by Molnar and Modestino [41]
was a non-batch EM approach to tracking that calculates
the maximum a posteriori (MAP) estimate and uses a
Markov random field to model the target-measurement
associations, resulting in a significantly lower complex-
ity. Jeong and Park [31] used an alternative version of
the EM algorithm to produce a recursive MAP target
tracker that also estimates various parameters, reducing
its complexity by approximating the joint association
event probabilities reducing its complexity by approxi-
mating multiple target joint association event probabil-
ities as products of single target joint association event
probabilities. Pulford and La Scala [49] used the EM al-
gorithm coupled with the Viterbi algorithm to estimate
target maneuvers.

In contrast, the PMHT uses an arguably incorrect
measurement model in order to reduce its complexity.
That is, when told that a particular measurement origi-
nated from a particular target, it ignores any condition-
ing this may imply when determining the posterior as-
sociation probabilities of the other measurements. As a
result, the probability of a particular measurement com-
ing from a particular target is independent of whether
that or any other target produced any of the other mea-
surements, and each target is allowed to produce any
number of measurements. However, each measurement
can only originate from a single target, which is realis-
tic when the targets are well resolved. A version of the
PMHT accounting for unresolved targets has also been
developed by Davey [11].

2A though the focus is on target tracking, the PMHT algorithm has
found use in other applications, such as cartography [10].

It should be noted that the PMHT is not the only
algorithm utilizing an “incorrect” measurement model.
Particle filter based trackers by Hue, Le Cadre, and
Pérez [27], [28] as well as by Gilholm, Godsill, Maskell,
and Salmond [25] utilize the same model. The mea-
surement model has some appeal when high resolution
sensors are able to over-resolve the target.

The PMHT was first proposed by Streit and Lugin-
buhl in 1993 [60] with the first full statement of the
algorithm appearing in a Naval technical report two
years later [61]. The PMHT algorithm was defined
very generally in [61], allowing for the target dynamics
and measurement model to have arbitrary distributions.
However, such a generic model did not allow for the
maximization step of the EM algorithm, upon which
it is based, to be easily performed, and thus the prac-
tical implementation presented had a discrete-time lin-
ear motion model, as used in the Kalman filter. Since
then, quite a few variants of the PMHT algorithm have
emerged, many of which have been compared by Wil-
lett, Ruan, and Streit in [71].

The best performing variants of the PMHT, that
is those having better track-loss characteristics than
the JPDAF, are the Turbo PMHT, by Ruan and Wil-
lett [56] and Willett, Ruan, and Streit [69] and Multi-
Frame PMHT (MFPMHT) algorithms. The currently
best-performing version of the PMHT is the MFPMHT
that accounts for missed detections, by Blanding, Wil-
lett, Streit, and Dunham [7], which is a modification of
an earlier MFPMHT by Streit [59]. However, the better
performance of the MFPMHTSs comes with an increased
complexity, being roughly exponentially complex over
the last L frames of an N frame batch.

The homeothetic PMHT, first derived by Rago, Wil-
lett, and Streit in [53], was an ad-hoc approach to im-
proving the performance of the PMHT through the use
of multiple measurement models with different noise
covariances. The different covariances were intended to
overcome estimation problems in the PMHT and not to
function as multiple models for states inherent to the
targets. However, this may be thought of as a forerun-
ner to multiple model PMHT algorithms. Logothetis,
Krishnamurthy, and Holst [35]* were the first to develop
a form of the PMHT algorithm involving multiple mod-
els to account for target maneuvers. The transition be-
tween model states was governed by a Hidden Markov
Model (HMM). The maneuvers were handled using ad-
ditional unknown “control” inputs to the Kalman filter.
Willett, Ruan, and Streit [69] also did this, modeling the
maneuvers as increases in the process noise of the tar-
gets forming the MPMHT. In both approaches, the ac-
tive model of the target was modeled as one of the “nui-
sance” variables in the EM algorithm. Pulford and La
Scala [49] took a different approach, making the maneu-
vers part of the quantity to be estimated in the EM algo-
rithm. Their maneuver-estimation approach can be used

3This is the journal version of an earlier conference paper [34].
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with various EM-algorithm based trackers including the
PMHT. Willett, Ruan, and Streit created an interactive
multiple model approach to tracking using the PMHT
in the presence of maneuvers (IMM-PMHT), replacing
the backward-forward algorithm used in [69] with an
interacting multiple model (IMM). They also derived
a turbo-coding based extension to the MPMHT, which
they dubbed the Turbo MPMHT. This later matured into
the Turbo PMHT, as described by Ruan and Willett
[56]. More recently, Luginbuhl, Ainsleigh, Mathews,
and Streit [36] demonstrated how to derive the observed
data likelihood function for the family of manoeuvring
PMHT trackers.

The basic PMHT is an algorithm that tracks targets
based upon discrete observations at each scan. How-
ever, a variant called the Histogram PMHT (H-PMHT)
allows the PMHT to process continuous data directly
from a sensor. The concept was first introduced by Lug-
inbuhl and Willett [37] as a method of tracking a general
frequency-modulated signal in noise (explained in more
detail in [38]), and a variant appeared in [58]. Walsh,
Graham, Streit, Luginbuhl, and Mathews [64] later pre-
sented a one-dimensional application of the algorithm.
Pakfiliz and Efe [44] presented a two-dimensional ap-
plication, and most recently, Davey, Rutten, and Cheung
[15] compared it against other track-before-detect meth-
ods. In this paper, we do not consider the processing of
continuous sensor measurements. The use of the PMHT
in tracking problems with bearing-only measurements
has been studied by Giannopoulos, Streit, and Swaszek
[23].

In its original version, the PMHT did not account
for clutter. Rago, Willett, and Streit [52] extended the
PMHT to cluttered environments under a number of as-
sumptions, regarding the probability of a measurement
originating from clutter, by modifying the target mea-
surement assignment probabilities wy (7). In the next
year, Hutchins and Dunham produced a similar version
of the PMHT for use in cluttered environments [29], in-
volving an ad-hoc constant in the denominator of the tar-
get measurement assignment probabilities. In later pub-
lications, an analytically derived solution has been used,
but no complete derivation has been given. In this paper,
we provide an explicit derivation of the PMHT includ-
ing clutter, and we provide a full Bayesian derivation of
the prior and posterior association probabilities m; ,(1,)
and wy ., (7). The probabilities 7, (,,(n,) have previously
been derived by Wieneke and Koch [66], but here it
is developed in such a way that the solution could be
simplified by omitting “fictitious targets” that had been
used in [66].

Davey, Gray, and Streit [14] introduced the use
of target classification measurements into the PMHT.
Namely, extra data can be used to identify the type
of each observations, e.g., whether an observation is
clutter, a plane or a missile. A more complete analysis
of this work is given in Davey’s PhD thesis [9]. In this
paper, we show how classification measurements can be
used in a multisensor environment.

A CRITICAL LOOK AT THE PMHT

The simplest approach to multisensor tracking with
the PMHT was first considered by Rago, Willett, and
Streit [51]. They pooled all of the measurements from
all of the sensors together and ran the PMHT as if all of
the measurements came from a single sensor. One can
justify this by the fact that the PMHT’s measurement
model allows for a single target to produce multiple
observations. Hempel [26] considered the robustness of
the PMHT to registration errors when the measurements
from all sensors are pooled. However, versions of the
PMHT specifically accounting for multiple sensors by
modifying the likelihood function to reflect their pres-
ence have been developed, and have been shown to im-
prove the performance of the tracker over the pooled
measurement approach. These were developed concur-
rently by Krieg and Gray [33], by Giannopoulos, Streit,
and Swaszek [24] and by Gauvrit, Le Cadre, and Jauf-
fret [22]. All of these derivations used the Levenberg-
Marquadt method (described, for example in [5]) for
performing the maximization step of the EM algorithm.
In this paper, we show that a simpler, non-iterative ap-
proach exists.

In its original form, the PMHT algorithm was meant
to track a known number of targets and lacked any no-
tion of track discovery, termination or merging. How-
ever, such tasks are necessary for a tracker to be usable
in real-world situations. Several advances have been
made in integrating track discovery and termination fea-
tures into the PMHT. A complete track management
system, in which tracks were discovered and terminated
by separate algorithms outside of the PMHT algorithm,
was first introduced by Luginbuhl, Sun, and Willett
[39], whereby track extraction was done via the Hough
transform. Alexiev [1] also considered the use of the
Hough transform with the PMHT. Davey and Gray [12]
later gave a comparison of various methods of track ini-
tiation, and Dunham and Hutchins [17] considered us-
ing the MHT as a track-finding front-end to the PMHT,
whereby once tracks were stable they were handed off
to the PMHT. Since then, however, additional methods
of track management have emerged. Davey and Gray
introduced the Hysteresis PMHT [13], which treats the
existence of a target as an extra state in the estima-
tor. Musicki and Wang [43] used an ad-hoc approach
of modifying the posterior association probabilities to
do the same thing. Wieneke and Willett [68] looked at
methods of determining track deletion and Wieneke and
Koch looked at hypothesis tests for estimating the num-
ber of tracks present [67].

3. THE EXPECTATION MAXIMIZATION ALGORITHM
AND DETERMINISTIC ANNEALING

The PMHT is based on the EM algorithm. The EM
algorithm, discovered by Dempster, Laird, and Rubin
[16], is a method of determining the ML or MAP es-
timate of data given incomplete information. Redner
and Walker [54] specifically looked at the use of the
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EM algorithm for ML estimation of parameters of mix-
ture densities, a topic that is relevant to EM algorithm
based target tracking. The EM algorithm is summarized
here, which is extensively covered in the monograph
by McLachlan and Krishnen [40], and we must note
the tutorial by Moon in [42]. It should be noted that
the EM algorithm does not provide the covariance of
its estimate. This is, however, necessary for the tracker
to be useful and is discussed in Section 7.

Let X be an unknown random quantity the MAP
estimate of which we would like to find. Let Z be
the set of observations, which are dependent upon X
and a set of unobservable random variables K. We
would like to find the MAP estimate of X without
having to determine K, which might be a difficult or
computationally complex task. The MAP estimate of X
may be expressed as

A

Xpmap = argm)?xE{log(p(X | 7))}, (1)

in which p represents a probability density function
(PDF). The expectation comes from the Law of Total
Probability eliminating the unobservable random vari-
able K. However, in many cases the expectation may
be difficult to evaluate. The EM algorithm avoids direct
computation of this expectation. Define the following
function:

QXD X )
A / log(p(X"*V. K | Z))p(K | X, Z)dK. (2)
K

The integration in (2) is defined over whichever measure
is appropriate for K, which may be discrete. The EM
algorithm is as follows: in each step, X"+ is found as
X(n+l) = arg II(la)]()Q(X(’H—l),X(”)) (3)
X n+
n is then incremented and one continues until a desired
level of convergence has been attained.
In some instances, the PDF p(X"+D K | Z) may be
difficult to determine. If this is the case, by the definition
of conditional expectation, it can be noted that

p(Z,X,K)
p(Z) -

Substituting (4) into (2) and separating the logarithm
we get

O(X"*V:X™)

pX.K|Z) = “

- / log(p(Z. X"V, K))p(K | X", Z)dK — log p(Z).
K
)

Because p(Z) is a constant, that term may be dropped
from (5), since it has no effect on the location of the
maximum and thus p(X"*Y K |Z) and p(Z,X"*D K)
may be used interchangeably in the EM algorithm.
Boyles [8] and Wu [30] studied the convergence
properties of the EM algorithm, correcting a mistake

in Theorem 2 of Dempster, Laird, and Rubin’s origi-
nal paper [16]. They showed that the EM algorithm is
guaranteed to converge to a saddle point or a local max-
imum, which need not be the desired global maximum.
To which critical point it converges is highly dependent
upon the initial estimate X1,

Over the years, a number of versions of the EM algo-
rithm have been developed, many of which are summa-
rized by McLachlan and Krishnen [40] and by Roche
[55]. Most sought to increase the convergence speed
of the algorithm. However, for the PMHT algorithm,
the primary concern is avoiding convergence to local
maxima. In order to reduce dependence on the initial
estimate and encourage convergence to the global max-
imum, the Deterministic Annealing (DA) EM algorithm
was developed by Ueda and Nakano [62], who recog-
nized that solving the maximum likelihood problem is
analogous to similar problems linking concepts in ther-
modynamics and information theory. This was applied
to the PMHT first in 1999 by Strandlie and Zerubia
[57] and was later applied in a more general form by
Wieneke and Koch [66]. When tracking a single target,
the basic PMHT algorithm with deterministic anneal-
ing is identical to the Deterministic Annealing Filter by
Fruhwirth and Strandlie [20]. As shall be described after
the basic derivation of the PMHT, deterministic anneal-
ing can be added to almost any version of the PMHT
algorithm. To derive the DA-EM algorithm, we shall use
the definition of conditional expectation to note that

P(Z,K,X™)

(K| X™,Z) = )
PK| T, PZK XM)dK,

6

The denominator in (6) is equal to p(Z,X). The DA-EM
algorithm substitutes (6) into (2) and introduces the term

3 as
QDA (X(n+ 1) : X(n))

p(Z, K, XM)8
le p(Z,K,, X(n))ﬂdKl

= / log(p(X"*D K | Z))
K

(N

In the original description of the DA-EM algorithm, £,
the inverse of which corresponds to the “temperature”
in an analogous thermodynamic problem, is initially set
to a value between 0 and 1. Qp, is then iterated with
respect to X*D and X until convergence, as is done
in the regular EM algorithm. Then [ is increased to
a value closer to one and Qp, is again iterated until
convergence. The DA-EM algorithm is complete when
G has finally been increased to 1. Note however, that
the original version of the DA-EM algorithm did not
specify exactly how (8 was to be increased.

When 3 < 1, the PDF p(K | X™,Z) becomes flat-
ter, which reduces dependence of the algorithm on X,
The reasoning behind the DA-EM algorithm is that by
slowly increasing (3, the effect of p(K|X™,Z) is in-
creased at the same time that the estimate X improves.
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In the final step 8 =1 and (7) is equivalent to (2) and
the EM algorithm should be more likely to converge to
the global MAP estimate, because of the improved prior
estimate X®.

In order to use the DA-EM algorithm in a practical
implementation, one must have a method of increasing
G. If 3 is increased very slowly, then in general, one
iteration should be enough for convergence at each
value of 3. Thus, in [57] and [66], the DA-EM algorithm
was carried out as follows:

Let n,,, be the number of iterations that one
wishes to do. For each iteration from n =1 on-
wards, set 5 =n/n,,,. Now iterate the EM algo-
rithm as would normally be done. That is, X"*! is
the set to the value maximizing Qp, (X"*1;X®)
at each step. In the final iteration § =1 and the

result is the EM algorithm result.

Although convergence to the global MAP estimate is
not guaranteed, as long as n,,, is large enough, this
approach will generally outperform the basic EM algo-
rithm. In Section 9, we demonstrate how deterministic
annealing improves tracking performance when multi-
ple sensors are used. Although the above method is the
procedure needed to get the MAP estimate, the ML es-
timate can be attained by replacing p(X"+D, K | Z) with
PZ.K | XO+D),

4. THE PMHT ALCORITHM: STATE ESTIMATES

We shall now derive a general form of the PMHT
algorithm allowing for the presence of clutter, multiple
synchronous sensors and the use of classification infor-
mation. The most general form of the PMHT allows for
a very generic target motion and measurement model
[61]. However, due to the difficulty of the maximiza-
tion step of the EM algorithm under a generic model,
practical implementations of the PMHT are often based
upon the motion models that, in the absence of target-
measurement association uncertainty, contain the as-
sumptions inherent to the basic Kalman filter (see, e.g.,
[4]). We shall derive the PMHT under such a model,
accounting for clutter, taking advantage of multiple sen-
sors, and utilizing classification data. It shall be assumed
that the measurement noise between sensors is uncorre-
lated and that sensors have the same field of view. The
case where the sensors have different fields of view and
gating is present, is discussed in the following section.

Given M targets, the state vector at time ¢ for the
mth target shall be designated as x,,. The observation
originating from the mth target shall be designated
¥,.(t). The basic discrete-time kinematic motion and
observations equations are given by*

X, +1)=F, (O, () + v, () ®)

4The Kalman filter and Kalman smoother equations associated with
this model are summarized in Appendix D.

A CRITICAL LOOK AT THE PMHT

and
Y,.® =H, Ox, @) +w,(@). (C)]

The process noise at time ¢, v, (f), is assumed to be
Gaussian distributed with zero mean and covariance
Q,,(t). The measurement noise w,,(¢) is also modeled as
a zero-mean Gaussian random variable with covariance
R, (t) and is assumed to be uncorrelated with the process
noise. The covariance of the true measurement from the
mth target R, (¢) describing w,, (¢) from (9), corresponds
to the covariance of one of the measurements out of the
set of all measurements at time 7, whereby R, ((7) shall
represent the covariance of measurement r from sensor
s based upon the location of the observation, without
stating a particular associated target.

Let Z be all of the measurements and classification
information from time r = 1 to N. Let X be the states of
all of the targets over the same time period and K be the
set of associations between targets and measurements.
Let there be a total of S sensors that take measurements
synchronously. If z, (¢) is the measurement r at time
t from sensor s that came from target m, then we
shall denote said association by k, (t) = m. We would
like to use the EM algorithm to estimate X without
explicitly determining which set of k, (r) from the set
of all possible target to measurement associations, K, is
correct. We shall consider clutter to be target m = 0.

The inclusion of classification measurements in the
PMHT was first discussed by Davey, Gray, and Streit
[14]. We shall assume that some type of classification
has already been done for each measurement, giving us
z£,(1), the classification data associated with measure-
ment » from sensor s at time ¢. Including classification
in the PMHT means estimating the type of each target.
This is done via a confusion matrix C whose elements
are defined as

c(i,m) = Pr(zC\(1) = i | k, () = m). (10)

i in (10) represents the ith classification out of the set
of all M. possible classifications. The true classification
of each target is assumed to be time-invariant, which
is why ¢;,, is not indexed against time.> That is, the
appearance of each target is assumed to be constant. It
shall also be assumed independent of that state. The
confusion matrix is the estimated probability that a
target or a clutter measurement has a certain associated
appearance. The confusion matrix shall be estimated
along with X in the PMHT algorithm. Thus, argmax;c; ,,
will be the MAP estimate of the classification of target
m at the end of the algorithm.

Let us find the first PDF in (5), including C next
to X as an unknown to be estimated. Let n,(s) be the
number of measurements at time ¢ that came from

SThis assumption plays a role in our subsequent estimation of the
confusion matrix via the EM algorithm as part of the PMHT. However,
if one does not wish to perform EM algorithmic estimation of the
confusion matrix, then a time-varying confusion matrix may be used
without modification to the rest of the PMHT.
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sensor s. In order for p(Z,X,K,C) to be written, it
shall be conditioned on n,(s). However, we will not
explicitly write this conditioning except when necessary.
p(Z,X,K,C) is given as
p(Z,X,K,C)

= pX)p(Z,K,C | X) (ITa)

pX)

(Hp(x (D)Hp(x ()] %,,(t,—

m=1

P(ZK[X)

1)))
S N n(s)

< TTTTT TPk, 1% ®.m)p(@, (0 [ &, (0).%, ()

s=1 t=1 r=1

PCIZXK)
————
X c(z5,(1),k, ().

In (11b), the PDF p(z, (1) | k. (), X, () depends
upon whether the measurement came from clutter or
from a target and is given by

p(zr,s(t) | kr,s(t)’ Xkr,s(t) ([))

(11b)

{Mn,ﬁ» if k. (1)=0
N{Zr,x(t);slkrvs(t)([)’Rr,x(t)} if kr,x(t) ;é 0 ‘
(12)

In (12), o denoted the PDF of the clutter, which we shall
assume to be continuous as a function of z, (¢), and
which need not be uniform, and BA’k,.,x(t)(t) is the estimate
of y from (9). That is,

Ye.0® =H_ (0%, ,(®). (13)

Define wkm_(,)’r(t, s) 2 Pr(k, (1) | ka_(,)(t),Z(t),C,n,(s)) as

the probability of a particular measurement-target as-
signment at time 7, whereby clutter is target k, (1) = 0
We shall refer to these as the “posterior association
probabilities.” One instance of K defines k, ((#) over all

T o0 DNAZ, (0:F;, O, R, (D} ez (1)K, (1)

Under the basic PMHT assumption, because each tar-
get can produce more than one measurement, all of the
values of w;_.(¢,5) at a particular time are indepen-
dent. Additionally, because the current state and obser-
vation set are given, the values of w; ) .(z,5) are also
independent as a function of time. Because of this in-
dependence, p(K | X, C,Z), the second PDF in (5), may
be obtained directly by multiplying the marginal prob-
abilities over all time and measurements for all of the
assignments:
S N n(s)

p(K [ X.€.2) = [T ] w0, @)

s=1t=1r=1

(15)

In order to make the notation in the above equation
correct if there are no observations at a particular sensor
at a certain time, that is if n,(s) =0, the following
definition must be used:

0
A
11w @9 =1. (16)

r=1

We would now like to determine the posterior
association probability w; . .(t,s). In previous pub-
lished works on the PMHT, no formal derivation of
this in the presence of clutter has been done and be-
cause it is not immediately obvious, it shall be in-
cluded here for completeness, in Appendix A. Define

T 0(1,(5).1) 2 Pr(k, (1) = m | ,,(1),n,(s)). This shall be

referred to as a “prior association probability.”® The
T, (o1 (s),1) values were derived using “imaginary”
targets by Wieneke and Koch [66] and we have red-
erived them in a simpler form in Appendix B. The orig-
inal PMHT algorithm made them a parameter to be es-
timated by the EM algorithm.

Using the solution from Appendix A for k, (7) # 0,
that is when measurement r from sensor s is not clutter,
then the posterior association probabilities for non-
clutter targets are as follows (in the final solution to the
PMHT algorithm, it will turn out that one never needs
to evaluate wy .(z,5)):

a7

Wi (0. (1:8) =

measurements r and sensors s, for all time in the batch.
The sum over K is equal to the sum over all sensors of
the sum over K, which is defined as

ZO—ZZ DN SR o

k]:(l) OkZS(l) 0 nl(x):(l) Okls(z) 0 nN(x):(N) 0

(14)

7o (n,(8), Dt 2, () (zE,(1),0) + S

1 T (), DNz, (0):5,,(), R, (D }e(zE,(1),m)

In a simple model where all targets have the same
probability of detection, F,(s), when viewed by sensor
s, and the number of clutter points at each sensor

S<“prior association probability” is somewhat of a misnomer, since
Trkr.s(r)(n[(s),t) is conditioned on the number of observations. How-
ever, this naming convention helps differentiate it from the posterior
association probabilities.

98 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 4, NO.2 DECEMBER 2009



is Poisson distributed with mean A(s)V(s) where A(s)
represents the mean amount of clutter per unit volume
at sensor s and V(s) is the volume of the viewing area
for that sensor, then, as derived in the Appendices B
and C, the prior association probabilities are the same
for all non-clutter targets and may be divided across
the numerator and denominator giving us the following
expression for wy ., ,.(t,s)

Nz, (03, O, R, (D} (0),k, (1))

Equation (21) comes from the fact that at any given
time the observations must have originated from a target
or from clutter. K\\k, ((#;,) represents the set of all
assignments involving sensor s except for k, ((#,) and
(22) comes directly from the definition of Wl?,_;(t),r(t’ s).
Note that when k, (1) =0, that is when observation

r is clutter, p(z, (f) | k,gs(t),xk”(t)(t)) contains no terms

Wi 0. (8) =

w(n,(s),t) = —M

(18)
7, (1,(5), Dt 2, () EE,(0,0) + Som_ Nz, ;3,00 R, [()}e(zE,(0),m)’
By(s)
by | =M, —n,(s); 5
2 o{ ’ "’(S)’(l—PD(s»A(s)V(sJ (19)

2y [1 —M,1—n,(s);

here the function ,Fyla,,a,;z] is a hypergeometric func-
tion.

Combining (15) and (11b) and omitting the constant
p(Z) we may form the Q function for the basic EM
algorithm in (5):

Q(Xn+1’cn+1;xn,cn) — Zlog(p(Z,X(”“),C("”),K))p(K | X”,C",Z)
K

PD(S) :| ’

(1 = Fp(sHASHV (5)

involving X. Therefore, for purposes of maximizing Q,
we may omit all clutter terms from the second set of
sums, because they disappear when the derivative is
taken. Using this fact and (21) and (22), Equation (20b)
may be simplified as follows:

(20a)

log Hp(X(IHI)(l)) Hp(X(n+l)(f ) | X(n+1) —1)

Iy=

N n(s)

S N

(s
+ ZZZZIOg(Wk (;)(” ($),0) H H H (:l])sl(tl)rl(t17sl)

K s=1t=1r=1

N n(s)

s1=16,=0

N

N (s
+Zzzzmg<e<zﬂm ko [T 11 H Wi o (151

K s=1t=1 r=1

N n(s)

K s=1t=1r=1

si=11=0 =1

S N n(s1)
+ ZZZ > tog(p(, () [ kX" O T TT TT Wi, o tros)- - (20b)
s1=1=0r =1

The superscripts in parentheses in (20b) indicate wheth-
er the values in question are to be calculated using
the current or the previous estimate of X in the EM
algorithm. As pointed out by Davey [9] in his thesis,
(20Db) is simplified by use of the two identities

N n
Y I 09 =1 21)
K, t=1r=1
and
N n
Z HHWk,-.s(t),r(t’ 5) = Wi, st (#,8).  (22)

Ks\kr] ;(li) t=1r=1

A CRITICAL LOOK AT THE PMHT

Q(Xn+l.Xn)
N m(s) M

Z Z Z Z log(r, (n,(s), WL, s)} 0y

s=1 t=1 r=1 m=1
N m(s) M

Z Z Z Z log(c(zE (), m)wir (1, v)} Oc

s=1 t=1 r=1 m=1

+log (Hm PO DD T, PO+ D) [ XD (e, — “))
ny(s)
+Zs 12: IZm 12 Ox:

xlog(N{z, (150 D(0),R, (DD (1,5)
(23)
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The maximization of the state component of the Q-
function, Qy, from (23), is performed indirectly by
finding an equation with the same gradient, Vy..:Qx,
and thus the same inflection points. Omitting constant
terms, the derivative taken over the innermost sum may

sensors but no data observation uncertainty. The second
term of (27) may be rewritten as follows:

N M
333G, X OR, 0 G, H X0,

t=1 m=1

be transformed as follows: (28)
n(s)
v, [Z wid (1,5)(z, (1) — H, X" DO)R, (0 (2, () —H, x" D)) (24a)
r=1
n(s)
= > Wi OH R, (@) (2,0~ H, X" V() (24b)
r=1
ny(s) n,(s)
=> wit.oH, R, (0 'z, ()= > wih.9)H, R, ()H, x"*V@) (24c)
r=1 r=1
n(s)
- (S0 n,)
r=1
n(s) -1 n,(s)
X (Z wi (t, s)H;,SRr’S(t)le> (Z wi (t, s)Hj.’SRr’s(t)lzr,s(t)> —x"*D(p) (24d)
r=1 r=1
=R,,,Z,,—x"""®) (24e)
= V,[@, (1) —x"DO)R,, ()7 @, O —x" D). (241)

R (1) are

The synthetic measurements z, () and R,

defined by
ny(s)

R, 07 =Y wl@e.oH, R, (O'H,, (25
r=1

and
n(s)

7, () =R, (1) (Z wS,’i)r(t,s)H;’SR,’s(t)lzm(t)> .

r=1

(26)

Note that R,, ((r)"' may not be invertible, so a pseu-
doinverse may be necessary. The equivalency between
(24a) and (24f) means that Oy from (23) has the same
derivative as

Q(XnJrl ’Xn)
M N
= log (Hp<x£:+“<1>>1'[p<x£:+”<r> X0 — 1))>
m=1 1=2
| s N M
DI IP A A0l
s=1 t=1 m=1
xR, (07! (@,, ~x;"V0). 27)

Equation (27) is the joint likelihood function of M
targets for which there are observations from multiple
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Letting I, be an identity matrix whose width is equal

to the number of states in x,,, z,,(f) and R, (7) are given
by
z,(1) = [z,,,(0), Z,,(),....z, 1)), (29)
H, =0 i, L 5L sl (30)
and
R, () = diag[R,, |, R,,.....R, . (31)

Substituting equation (28) into (27) is equivalent to
a single-sensor system with no data association uncer-
tainty having measurements given by (29), (30), and
(31). The maximization of Q is thus the maximiza-
tion of a single sensor system, the solution of which
is well known (e.g., [4]) to be the use of the Kalman
smoother (the equations for the Kalman smoother are
summarized in Appendix D). This is a simpler ap-
proach than using the Levenberg-Marquardt nonlinear
regression procedure, as suggested by Giannopoulos,
Streit, and Swaszek [24] in the original derivation of
the PMHT with multiple sensors. The use of the Kalman
smoother was also present in the original single sensor
PMHT algorithm.

This method of stacking measurements is a com-
mon method of measurement fusion for the Kalman
filter when there is no target-measurement association
uncertainty. Gan and Harris [21] showed that if at a
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particular time for a particular track all sensors have the
same measurement matrix, which being I, , is true in
this case, then the above method of merging the states
is equivalent to a simpler method. Namely, each track is
updated using a single, merged measurement given by

s -1
im(t) = (Z ﬁlﬂ,s(t)l> Zlim,s(t)ilim,s(t)
s=1 s=1

(32)
and

(33)

S -1
R, (1) = <Z f{m’x(t)1> .
s=1

The Kalman smoother may be thought of as running
a forward Kalman filter, and then running a backwards
smoothing operation on the track estimate resulting
from the Kalman filter step. Note that the use of the
pseudoinverse in (26) may be completely avoided if
the information filter (described, for example, in [4])
is used in place of the Kalman filter in the first half of
the Kalman smoother. The information filter calls for
R, ()7'z,, (1), obviating the need to invert R, (1)~ in
(26).

In general, except when range-rate information is
provided by the sensors, all H, | for a particular sensor
s will be the same for all measurements. In this instance,
the steps leading up to (24f) may be simplified, resulting
in the following simplified synthetic measurements

ny(s)
z,,(t) = (Zw(’"(t SR, (1)~ )

- "/(5)

ZWW(: SR, (1) 'z, (1)

(34)
and :

(35)

()
R, ()= (ZWO’) (t,9R, (1) )

The form of the synthetic measurements in (34) and
(35), allowing for each measurement to have a differ-
ent covariance matrix was first given in [66]. Previous
versions assumed that all measurements have the same
covariance. The forms given in (25) and (26) allow-
ing for different measurement matrices, as occurs with
doppler measurements, are unique to this paper. Note
that if each sensor has a different measurement matrix,
then the measurement fusion method given in (32) and
(33) is no longer optimal. In this case, the merged mea-
surement given in (29) and (31) should be used with the
modified merged measurement matrix,

H, =[H H,.... H] (36)

where H is the measurement matrix of the sth sensor.
The maximization of the confusion matrix via the
gradient V.1 Q¢ from (23) is performed under the

constraint e
Zci’m =1 (37)
i=1

A CRITICAL LOOK AT THE PMHT

Using (23) and (37), the Lagrangian to maximize is:

N m(s) M

Lo = ZZZZIog(c(Z, L), m))w(”) (,5)

s=1 t=1 r=1m=1

+ Z/\C (1 - Zc(i,m))

i=1

(38a)

N n(s) M Mc

S
=353 S U6, — i log(el, mywit.s)
s=1

t=1 r=1m=1i=1

M Me

+Y A (1 - Zc(i,m)) . (38b)
m=1 i=1

Equation (38a) is equivalent to (38b), where 6(¢) is the

Kronecker Delta function, which is one for r = 0 and

zero otherwise. Differentiating (38b) with respect to a

particular c(i,m) gives

S N n
1 1
¢ = A_CZZ 8z, —win(e,s).  (39)
ms=1t=1 r=1
Applying the constraint given in (37) gives
S N un M(;
S=D N DN 8 —bwin,s)  (40a)
s=1t=1 r=1 i=1
S N nm
ZZwa;’}u,s). (40b)

s=1 t=1 r=1
Combining (39) and (40b) gives us the update for the

Ci,m‘

c. ZS‘ th IZ 6(er l)w(n) (t S)
o Zsl—lZzl—er] 1Wf(1’11)rl(’1’51)

(41)

4.1. Regarding the Kalman Smoothing Step

The equations for the Kalman smoother are given in
Appendix D. It should be noted that although the EM
algorithm might call for the initial state estimate for each
track, x,,(1), to be smoothed along with the rest, prac-
tically the algorithm is not usable in this manner. The
first part of the Kalman smoother is done by running
a Kalman filter forward on the data. This requires a
covariance estimate for the initial state. On the first iter-
ation of the EM algorithm, this is not a problem. On ad-
ditional iterations, however, we do not have a valid esti-
mate for the covariance of the smoothed initial estimate.
If one were to use the covariance estimate coming out
of the Kalman smoother, then this value would decrease
every iteration as a result of “information incest.” That
is, the initial state would repeatedly get smoothed by
using much of the same data as before, but the Kalman
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smoother would interpret this data as being “new” and
at every iteration the covariance estimate of the initial
state would decrease. After enough iterations, the co-
variance assumed for the initial state will approach zero
even though we would not have supreme confidence in
the initial state.

A solution to this problem is to forego smoothing
the initial state at each step and to use its initial state
covariance at every iteration. That is equivalent to taking
the initial state out of the set of states X that are to be
estimated by the EM algorithm.

4.2. Precision Problems with the PMHT

Being based thereupon, all versions of the PMHT
algorithm suffer the same precision problems that can
occur with regular Kalman filter. Verhaegen discusses
the source of some of these problems as well as their
remedies [63] and such problems are also discussed
in most textbooks, such as [4]. The PMHT, however,
has a number of its own precision problems that must
be taken into account when designing any implementa-
tion.

At any step when calculating the posterior associ-
ation probabilities values for non-clutter targets, if all
valid measurements are far from the predicted value
Y (0, then it is quite likely that precision limitations
will render all of the ws to be zero.” In many such
instances, one can forego the use of the ws and as-
sume that there was a missed detection. In compari-
son with other algorithms, precision is a serious prob-
lem in the PMHT, because the non-clutter PDFs in w

Wi 0. (>5)

(T, 0 (1 (), ez (0 k, SOIN {2, ()3, (. R, (D}

4.3. Using Deterministic Annealing

The use of deterministic annealing can both help the
PMHT to converge to the global MAP estimate as well
as ameliorate precision problems associated with the
posterior association probabilities. Which maxima the
EM algorithm converges to is highly dependent on the
initial state estimates over the entire batch. Deterministic
annealing is an approach to reduce the dependence of
the algorithm on the initial estimates. However, this may
require more iterations of the EM algorithm than if
deterministic annealing were not used. As a result, just
incorporating deterministic annealing without changing
the number of iterations used could theoretically worsen
performance.

As shown in (7), the EM function with determin-
istic annealing replaces p(K |X",Z) in the regular EM
algorithm with

p(Z, K, X",C")’
>k, P(Z.K, X", CnidK,
(42)
The solution for p(K | X",Z) given in (15) is a product
of w terms. The addition of the 8 terms in (42) to
(15) can take place without explicitly decomposing
p(K | X",Z) into the parts listed in (42).

We note that each w term in (15) has a single
value in the numerator as well as a sum of values
in the denominator. The inclusion of the (s is done
by modifying the w terms as follows. For non-clutter
association probabilities, each w shall be adjusted from
(17) according to

p(K|X",C"Z) =

) (o (1, (), D1, 2, ()eEE(D),00)7 + S (7, (1,(5), DS, (0, mIN {z, ((1):F,,(0) R, (D}

are normally distributed having a covariance equal to
that of the measurement. In instances where the process
noise covariance is large and the measurement noise
covariance is small, precision errors can cause all of the
ws for a particular target to be zero much of the time.
Thus, paradoxically, the performance of the PMHT can
worsen as the magnitude of the measurement covariance
decreases. In instances where no measurement noise is
present, the PMHT is unusable.

7If a clutter model is present, then there will always be a nonzero
(clutter) term in the denominator of the ws, thus precision problems
can render all of the ws to be zero. However, if there is no clutter
term, then precision problems couples with distant measurements can
result in the fraction computed for the w to evaluate as 0/0. This can
signify that the target was not detected, or that the observation from
the target was very far from the predicted position.

(43)

Equation (43) is equivalent to raising the numerator and
each term in the denominator of (17) to the power of £.
The same would be done with the w for the clutter as-
signment, which we have omitted; there too one would
raise the numerator and each term of the denominator
to 8. Once all of the w terms have been multiplied, as in
(15) the result is thus the same as (42) except all com-
mon terms have been canceled out between the numera-
tor and denominator. That is, the result is still a numera-
tor raised to § and a denominator consisting of a sum of
terms each raised to 3. This is the same as the solution
given by Wieneke and Koch [66] without derivation and
similar to what Strandlie and Zerubia [57] derived.
For precision purposes, the exponentiation of the
normal PDFs in (43) is best performed by distributing
[ to the terms of the normal PDF, rather than evaluat-
ing the normal PDF and then exponentiating it. Because
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(6 <1, this increases the argument of the exponential
function of the PDF, which is where underflow prob-
lems are most likely to occur.

4.4. Sensors with Different Fields of View

The state estimate for the PMHT was derived assum-
ing that all sensors have the same field of view. When
the sensors have different fields of view, the calcula-
tion of the posterior association probabilities (the ws) is
different for each sensor.

Generally, a particular target will have a certain
probability of detection when viewed by a particular
sensor. In calculating the posterior association proba-
bilities, this detection probability is necessary for calcu-
lating the prior association probabilities. This detection
probability can be considered to be the product of the
probability that the target is located within the field of

5. THE COMPLEXITY OF THE JPDAF VS. THE PMHT

The most complex part of the JPDAF is the evalu-
ation of the posterior association probabilities. These
are equivalent to the posterior association probabili-
ties in the single-sensor PMHT, but with slightly dif-
ferent conditioning. The evaluation of these probabili-
ties is complex, because it requires the evaluation and
normalization of the likelihoods of all possible target-
measurement assignment combinations, a task requiring
the evaluation of the exponential function for every like-
lihood.

In the worst-case scenario, every measurement at
time step ¢ would fall in every target’s gating region. Let
n, be the number of measurements at step ¢ and M be
the number of targets. The number of possible target-
measurement assignments may be decomposed based
upon the number of targets observed and is given as
follows:

min(n,,M)

A v M " I (44a)

= ! a

JPDAF l ! ~—~
=0 ——— N—— Assign the measurements
Sum over the number Co0se which targets Choose which measurements to the targets
of targets observed are observed are observed
=, Fy[—n,—M;1]. (44b)

view of the sensor times the probability that the sensor
detects the target given that it is in its field of view.

As shown in Appendix B, the computation of the
prior association probabilities (the 7s) is combinatori-
ally complex if all of the targets have different prob-
abilities of detection. This is the case when one takes
into account the probability that each target is within
the field of view of each sensor. The complexity of this
situation may be reduced either by assuming a constant
detection probability for all targets within the field of
view of a sensor and gating to targets that should be
within the field of view given the state estimates. Once
gating has been done, this means that the prior and pos-
terior association probabilities for each sensor are calcu-
lated assuming a reduced number of targets: only those
that fall within the gate for that sensor.

4.5. Out-of-Sequence Measurements

In many practical data fusion schemes, measure-
ments may arrive at the fusion center out of sequence.
As was noted by Efe, Ruan, and Willett [18], the PMHT
handles such situations with ease. Because the PMHT is
a batch algorithm, as long as newly received measure-
ments correspond to a step that has not left the sliding
window, the measurements may be added to the batch
at any time and are used in the state update.

A CRITICAL LOOK AT THE PMHT

,F, refers to a generalized hypergeometric function. The
step from (44a) to (44b) was performed by noting that
the ratio of the g, ; and the g;th term of the sum in (44a)
is:
a, _ (U—n)(U—-M)

aq 1+ ' (43)
More information on the conversion of sums to hyper-
geometric functions may be found in [48].

In contrast, although the PMHT allows for more pos-
terior association probabilities than the JPDAF, due to
their product form (i.e., the assumed independence of
the associations) these do not need to be enumerated
individually. The evaluation of each measurement asso-
ciation probability w requires evaluating a single normal
PDF, and in the end normalizing over all w terms and
a clutter term. Thus, the number of evaluations of the
exponential function that need be done for one iteration
at one time step in the PMHT is equal to the number
of w terms, which is n,M. Thus, if the batch length of
the PMHT is N, and [ iterations are used then, noting
that the first estimate in the batch does not change with
each iteration, the overall complexity of the PMHT is:

N

Apyir = IM Zn,.
=2

(46)

As shown in Table I, when the number of targets is
small, the PMHT will have a higher complexity than
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TABLE I
Number of Combinations Considered by the JPDAF versus the
PMHT as a Function of the Number of Targets

M AlpDAF ApvuT
N

1 n+1 Iy ,n

2 nt2+nt+1 2125\/:2”:

3 nf+2nt+1 3125\?2”:

4 n;‘72n[3 +5n,2 +1 412::2”r

n, is the number of measurements in the frame considered, M is the
number of targets and / is the number of iterations that the PMHT
uses.

the JPDAF. Consistent with the simulation results of
Pao [46], practical implementations of the PMHT will
never have a lower complexity when there is only one
target. However, the complexity of the JPDAF scales
exponentially with the number of targets, whereas the
complexity of the PMHT scales linearly. So keeping the
batch length N fixed, the PMHT has a lower complexity
as the number of targets becomes large.

6. USING THE TRACKER OVER TIME

6.1. Growing and Sliding the Batch

The PMHT requires an initial estimate for all of
the states in the batch, as well as a the covariance of
the state estimate at the first time step. As empirically
demonstrated by Willett, Ruan, and Streit [70], a prac-
tical, efficient way of running the PMHT using a finite-
length batch is by growing and then sliding the batch.
In other words, at time # =1 one is given the initial
state estimates of the targets x,,(1). From time ¢ = 2 to
time t = N, where N is the maximum batch-length, the
PMHT is run while increasing the batch length by one
each time. As mentioned in Section 4.1, in order to elim-
inate “data incest,” the state estimates at the beginning
of the batch should be removed from the estimation that
is not updated as part of the Kalman smoothing step.
The initial estimates of the states for the rest of the batch
are very important for convergence. Even with the use
of deterministic annealing, as described in Section 4.3,
if the initial state estimates for the batch are particularly
bad, then the EM algorithm probably will not converge
to the global maximum, nor to a nearby local maximum.
For that reason, the best initial state estimates are the
estimates from the previous time step. The best initial
state estimate for each target at the new step, which was
not estimated at the previous time step, is the the best
a priori estimate, which is the Kalman filter estimate
x,,(t|t—1).

At all time steps after the batch length has reached N,
the batch should slide one step forward, as demonstrated
in Fig. 1 by the Single Shift batch with respect to the
Pre-Shift Batch for a length N = 4 batch. In this case,
the previous estimate from the first time step becomes
the new initial state of the first step of the batch, which
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Multishift Batch@—>
A2 A4

Fig. 1. Different methods of shifting the window for the next time
step as shown on a length-4 batch. Each method has its own
concerns regarding the consistency of the estimator and the

avoidance of “data incest.”

Pre-Shift Batch

Single Shift Batch

must have an accurate covariance. Section 7 looks at
ways of estimating the covariance of this state estimate
as well as those of the other state estimates in the batch.

6.2. Other Methods of Sliding the Batch

It should be noted that the aforementioned method
of sliding the batch is somewhat ad-hoc. Much literature
has also focussed on sliding the batch over multiple time
steps at once, as shown with the Multishift Batch in
Fig. 1. If this approach is taken, one can not obtain
a real-time estimate of the target’s location, but must
wait until another batch of information has arrived.
Ruan, Willett, and Streit [52] suggested that the batches
should not overlap by more than one time step and
later suggested [70] that the initial state of the slid
batch, be it slid one step or many, be calculated using
only information equal to or prior to that time period.
For example, in the Single-Shift batch in Fig. 1, only
information from times O and 1 could be used to create
the initial state estimate at time 1. However, a length-one
PMHT is not a very good tracker. As a result, by using
this approach the initial estimates become progressively
worse.

The main concern regarding reusing smoothed past
state estimates is that it introduces “information incest”
in the smoothed state. However, it should be noted that
this concern only exists with the initial estimate at the
beginning of the batch. The rest of the initial estimates
in the batch affect to which local maximum the EM
algorithm is likely converge, but they do not affect the
location of the maxima in the likelihood function.

The new initial state when using a Single-Shift batch
from Fig. 1 and the smoothed state estimate from the
previous batch as the initial state, introduces information
incest in that it has already been smoothed from future
observations. In the Multi-Shift batch, where only a
single state overlaps, no information incest is present.
However, in the example of Fig. 1, the initial estimate
for time steps 4, 5, and 6 in the slid batch would have
to be Kalman filter predictions from the estimate at
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time 3. If these are far from the true track location,
then it is likely that the precision errors will occur, as
described in Section 4.2 or that the EM algorithm is
likely to converge to a local maximum far from the
global maximum.

Thus, there is a tradeoff between how far one slides
the batch and how much “information incest” one
wishes to allow in the state estimate at the beginning of
the slid batch. Wieneke and Koch [66] decided to shift
a small number of steps, less than the batch length, and
use deterministic annealing. However, in many practical
situations, a state estimate is desired at every time step,
and thus the method of growing and sliding the batch
described in Section 6.1 is a simple approach.

7. COVARIANCE ESTIMATION IN THE PMHT

When sliding the batch, as described in the previous
section, an accurate covariance is needed for the new
estimate of the first time step of the batch. Additionally,
at any time during tracking, one may wish to have a co-
variance for the target state estimate. Being based upon
the EM algorithm, the PMHT does not directly provide
this. The simplest approximation is to use the covariance
estimates that are produced by the Kalman smoother at
each step. However, based upon the Normalized Esti-
mation Error Squared (NEES), which is more closely
defined in Setion 9, this has been shown to be inconsis-
tent.

In this section, we will look at two methods of
producing covariance estimations for the PMHT. One
approach, originally presented by Walsh [65], is to use
the inverse of the observed information to predict the
covariance. A simpler ad-hoc approach by Blanding,
Willett, Streit, and Dunham [6] is to obtain covariance
approximations by normalizing the posterior association
and using the covariance estimate from the JPDAF, (as
described, for example, in [3]).

7.1.  Using the Observed Information to Estimate the
Covariance

Letting D be the dimensionality of the state, the
observed information matrix is defined as the DM N x
DMN Hessian of the joint likelihood function of the
states and observations over all time, evaluated at the
state estimate, in this case the EM estimate:

I1X,Z12 Vi log p(Z.X)|y_ (47)
= [-Vxlog p(X) — Vi log p(Z | X)]|x_¢

(48)

= Iprior[f\(] + Idata[Z | )A(] (49)

The inverse of the observed information gives the co-
variance for all states over all time. The covariances of
the individual state estimates are in the D x D blocks
lying on the diagonal of the matrix.
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Walsh is the first of have derived these Hessians for
the PMHT. We shall give a multisensor adaptation of
the observed information matrix as explained by [6],
assuming that all observations for a particular sensor at
a particular time haveAthe same covariance and measure-

ment matrices. ;. [X] is given as

X(®)

I [X] =diagH —o@) } ©t=1,...,.N—-1
P =6y x(t+1)
(50)
with
diag(P, (1| 1)~' +F,(1)Q,(1)~'F,(I):
m=1,....M] for t=1
diag[Q,'(t — 1) + F,,()'Q,' OF, () :
x(@) = m=1,...,M]
for t=2,....T -1
diag[Q,,'(T — 1) :
m=1,....M] for t=T
and G
(¢) = diag[F, (1) Q,, ()" :
m=1,....M] for t=1,....T -1
(52)

x(#) and 6(t) are MN x M N matrices. The contribution
from the data is given by

N
Lol Z | X1 = " (B(s) — C(s) + D(s)), (53)
s=1
B(s) = diag[B(,s): t=1,...,T], (54)
C(s) = diag[C(t,s): t=1,...,T1, (55)
D(s) = diag[D(¢,s): t=1,...,T], (56)
B(t,5) = diag[H,, ()R, () 'H,, (1) :
m=1,...,M], (57)

C(t,s5) = diag [H,(t) R (1) !

ne(s)
X (Z W, (), (5,00, (s,1) )

r=1

xR () TH(t): m= 1,...,M] ,

) (58)
D(1,5) = Y D, (15D, (t,s), (59)
r=1
and
Wm,r(t’ S)HS(I)IRII (I)Vl,r(t)
Dr(f, S) = (60)

Wy (6 OH 'R (v, (1)
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Note that B(¢,s) contains the synthetic measurement co-
variance R, ((7), whereas the other equations only con-
tain the covariance of the measurements. The innova-
tions are defined as follows:

Uy (555 = Hy(DX,, (1) — 7, (1)

The derivation of the observed information was per-
formed under the assumption that the transition matrix F
and the process noise covariance matrix Q are invertible.
This is true when using the discretized continuous white
noise acceleration model for the motion, but is not true
when using the discrete white noise acceleration model
[4], in which case a pseudoinverse would be necessary.®?

(61)

7.2. A Simpler, Ad-hoc Approach to Covariance

Estimation

We shall extend the ad-hoc covariance estimation
approach taken by Blanding, Willett, Streit, and Dun-
ham [6] to the multisensor case. That is, we shall show
that estimator consistency is improved when the pos-
terior assignment probabilities are normalized and the
covariance estimate from the MSJPDAF is used. The
MSJPDAF is a generalization of the JPDAF to multiple
sensors (see, for example [3] for information on the ba-
sic JPDAF). There exist two forms of the MSJPDAF, a
sequential and a parallel one, which were contrasted by
Pao and Frei [45]. Because the sensor fusion is done in
parallel at each step of the PMHT, we shall consider the
parallel version of the MSJPDAF.

The MSJPDAF requires that the posterior associa-
tion probabilities sum to one over all measurements for
a particular target plus the probability that target was
not detected. This is because the MSJPDAF does not
make the same assumption as the PMHT, that each tar-
get can produce more than one measurement at a par-
ticular time. By noting that in the PMHT measurement
model the assignment of one measurement to the target
has no bearing on the probability that another measure-
ment is assigned to the same target, the probability that
a particular target m was not detected by a particular
sensor s at a particular time ¢ is given as follows:

n

Bos@® = [ =w,,,@5).

r=1

(62)

Thus, the normalization over the observations, not
changing the probability of a missed detection is:

B rs) = wm,,a,s)Zln,%m

r=1 Wm,r(t’ S) . (63)

8The Moore-Penrose pseudoinverse of matrix A is A=Ay 1A If
AA’ is poorly conditioned, then the pseudoinverse can produce bad re-
sults. In simulations using the discrete white noise acceleration model,
we have observed that conditioning is often a problem in evaluating
the observed inverse of the information matrix.

The covariance update from the parallel MSJPDAF is:

P, (t|t)= (Z Boc O, ot | 1) +X,,0(t | DX, (1 | z)’)>
C

—x,,(t|Dx,(]1). (64a)

Equation (64a) is the form given by Pao and Frei [45].
C represents a particular combination of assignments
between sensors for a particular target. Each 3, . is a
product of 3, . (¢) terms over all sensors for a combi-
nation of assignments r, for each sensor. The whole set
of C is the set of all possible measurement to target and
clutter assignments at a particular time over all sensors.
This means that the covariance calculation is roughly
exponentially complex as a function of the number of
Sensors.

In (64a), x,, (1 | 1) represents the state update of the
Kalman filter if the measurement-assignment for all sen-
sors given by C is correct. This means fusing the actual
observations in the same way that the synthetic mea-
surements were fused in (29), (30), and (31) and then
updating the state estimate from the PMHT. By updat-
ing the PMHT state estimate reusing the observations,
a certain degree of “data incest” is added, but again this
method is ad-hoc and problems with the “incest” were
not observed in previous work using a single sensor [6].
The covariance P, (¢ |7) is likewise what the covari-
ance would be if assignment C is correct. Since only the
first state of the PMHT has a covariance, the pre-update
covariance at time ¢ would consist of P, (t |t — 1), that
is the forward predicted covariance from the previous
estimate. In this manner, this covariance estimation al-
gorithm must be done in order from the first to the last
state estimate. x,,(7 | 7) is a the weighted average of these
other state updates:

X, (010 = BueXpel|0). (65)
c

8. A SUMMARY OF THE BASIC ALGORITHM

We shall give a summary of the basic PMHT algo-
rithm assuming that all targets have the same probability
of detection and that the measurements all have the same
measurement matrix H. If the detection probabilities are
different for all targets, then the prior and posterior as-
sociation probabilities referenced from the appendices
should be used. If the observations have different mea-
surement matrices, as might be the case if range-rate
information is available, then the alternative state update
equations given in Section 4 should be used.

1) Set the initial state estimate for each target at the
current time step to the Kalman filter predicted
value of the state x,, (7 |7 — 1).

2) For each sensor and observation, calculate the pos-

terior assignment probabilities w,_, ,(7,s) accord-
ing to (18) and (19).
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3) Create the synthetic measurements im,s(t) with their

corresponding measurement covariances R, ((¢) for
each target, measurement and sensor according to
(25) and (26) or (35) and (34).

4) Merge the synthetic measurements between sensors
according to (32) and (33).

5) Using the fixed initial state estimate x,,(1) and state
covariance estimate P, (1) for each track, run the
Kalman smoother, as described in Appendix D us-
ing the merged measurements as the observations.
Do not smooth the initial state.

6) Update the confusion matrix using (41).

7) Go to step 2. Repeat until convergence of the EM
algorithm.

8) If desired, estimate the covariance of the updated
state estimate x,,(f | ) using a consistent approxima-
tion, such as (64a) or as described in Section 7.1.

9) Slide the batch window forward, using the proper
covariance estimate for the new initial state, such
as in (64a) or as described in Section 7.1.

10) Go to 1.

9. SIMULATION

We compared the consistency and track retention
rates of the MSJPDAF and the MSPMHT with and
without deterministic annealing and using the various
covariance estimation methods of Section 7 when us-
ing two sensors and two targets. The sequential ver-
sion of the MSJPDAF was used.” We used the two-
dimensional discretized continuous white noise acceler-
ation model.!® Both sensors had the same field of view
and measured in Cartesian coordinates without classifi-
cation information. The ordering of the elements of the
state was [x,y,x,y]. Using an 80% probability of detect-
ing each track at each sensor, the simulation parameters
were

‘10 T 0
01 0T
F=10 01 ol (66)
00 0 1
‘T33 0 T2 0
o T3 0 T2,
Q=lppn o 7 o | ©
L 0 T?/2 0 T
10 0 0
H=10 1 0 o) (68)

9[47] discusses the sequential MSJPDAF algorithm, but provides an
incorrect state covariance estimate. [32] provides the correct state co-
variance estimate when solving a different problem.

10The one dimensional version is described in [4]; the two-dimension-
al version follows from it.
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Fig. 2. A typical run of the simulation. The observations from the
first sensor and the last frame of clutter for that sensor are shown.

and

(69)

The sampling time 7 was set to 30 seconds. 1,000
Monte Carlo Runs were performed. The first target was
placed at the origin given an initial velocity of 7 m/s
at a 59° angle from the x axis. The second target was
assigned the same speed, and was placed at 500 m on
the y axis. Ascending at a 52° degree angle from the x
axis. o,, was chosen to be 50 m for both sensors and o,
0.1 m?/s3. Clutter was generated uniformly in a view-
ing rectangle bounded between (—200 m,—200 m) and
(3.5 km, 6 km). The number of clutter points was deter-
mined at each time step by a Poisson random variable
having mean 23. The MSPDAF was gated to observa-
tions within a 99.97 percent probability region around
the estimated location of the target. The simulation was
initialized by giving two correctly assigned measure-
ments for each track to information filters (the informa-
tion filter is described in [4]). For the PMHT, a window
growing to a maximum of length 10 was used. After
the 10th time step, the window slid. The PMHT was
performed using 10 iterations at each step.

Fig. 2 shows a typical run. The proportion of tracks
not lost at each step was calculated. A track was consid-
ered lost if at any point, the true location of the target
was outside of the 99.97 percent confidence interval of
the estimated target location. Fig. 3 shows the track-loss
performance. As expected, deterministic annealing sig-
nificantly improved the track-loss performance of the
MSPMHT.

To evaluate the consistency of the trackers, the av-
erage normalized estimation error squared (NEES) for
tracks that were not lost was calculated and averaged
over all tracks and Monte Carlo runs. The NEES is de-
fined as

NEES = (x(t) — x(¢ | )P(t | t) ' (x(t) — x(¢ | 1))
(70)
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Fig. 4. The average NEES for tracks not lost by any of the trackers. The horizontal lines mark the 95 percent confidence interval of the
NEES. (a) Without DA. (b) With DA.

The NEES for a particular track is a random variable
with 4 degrees of freedom. The average NEES over
n Monte Carlo Runs is a chi-squared random variable
with 4n degrees of freedom. As mentioned in [4],
the inverse Cumulative Distribution Function (CDF)
of a chi-squared random variable given v degrees of
freedom, where v > 100, is approximately

X2(p)~1 (Q(p) + m)z.

p is the probability at which the inverse CDF is to
be evaluated. G(p) is the inverse CDF of the standard
normal distribution. Thus for the 95 percent confidence
interval we get:

[G(0.025), G(0.975)] =[-1.96, 1.96]. (72)

As can be seen in Fig. 4, the use of MSJPDAF
covariances in the two-sensor MSPMHT improves the
consistency of the tracker, even outperforming those ob-

(71)
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tained by using the observed information approxima-
tions. However, as can be seen in Fig. 3, the use of
improved covariances has little effect on track reten-
tion. The apparent inconsistency of the initial estimate
in Fig. 4 stems from the fact that those tracks most often
lost by the PMHT were those where the covariance of
the initial estimate was underestimated. Deterministic
annealing significantly improves track retention. This
coincides with previous results done using a single sen-
sor on a single track [57] and [66].

All together, the MSPMHT performs worse than the
MSJPDAF in the two sensor scenario. However, the
poor performance of the basic PMHT has been shown
in previous literature and was one of the motivations
for the creation of other PMHT algorithms, such as the
MF-PMHT by Blanding, Willett, Streit, and Dunham
[7]. The multisensor PMHT presented in this paper can
form the basis of such modified algorithms.
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10. CONCLUSION

We derived a general form of the PMHT involv-
ing clutter, multiple sensors, and classification measure-
ments. We provided a simpler method of performing
the maximization step when using multiple sensors. We
demonstrated that deterministic annealing can signif-
icantly improve tracker performance and we showed
that the JPDAF covariance approximations provide the
most consistent covariance estimates in the simulation,
but this consistency has little effect on the track reten-
tion as compared to using the synthetic covariances. We
also provided a simplified solution for the prior asso-
ciation probabilities (the 7s). Although having worse
performance than comparable algorithms, such as the
MSPDAF, the PMHT algorithm derived here can form
the basis of other modifications of the PMHT, such as
the Turbo PMHT and the MFPMHT, which achieve bet-
ter track retention.

APPENDIX A. A DERIVATION OF THE POSTERIOR
ASSOCIATION PROBABILITIES w, (7, 5)

The derivation of the posterior association proba-
bilities for the PMHT is dependent upon the sensor in
question. For simplicity, we shall assume that we are
only considering that which is seen by sensor s and
we shall suppress s from the notation. As has typically
been done, we shall derive it assuming that all sensors
see everything and that there is no gating.

In order to highlight the complexity reduction of the
PMHT measurement model, we shall begin by assum-
ing the regular target-measurement assignment model
(i.e., that a target can produce only one observation per
sensor at each time) before finishing the solution using
the PMHT measurement model. Let there be a total of
M non-clutter targets and one clutter target m = 0. Let
X(?) be the state of the Kalman filters for all non-clutter
targets at time t. Define z.(¢) € Z(?) to be the rth mea-
surement out of the set of Z(r) measurements at time
t, which consists of n, measurements (in order to sim-
plify the notation, we shall omit the subscript on n).
zrc(t) shall be the classification value associated with
measurement z,(¢). Define k,(f) to be source of the rth
measurement at time . C shall be the set of all classifica-
tion probabilities c(i,m) = Pr(z,c(t) =i|k.(t) =m). The
classification of the target is assumed independent of
time and the target state. The probability that measure-
ment z, at time ¢ came from target m given the current
set of observations, the set of classification probabili-
ties, and the estimated state of the set of Kalman filter
is w,, (1) =Pr(k, (1) =m | X(7),Z(1),C,n). Using Bayes
Rule, this may be decomposed as follows:

Pr(Z(1) | kr(t) = m,X(l),C,n)Pr(kr(t) =m|X(),C,n)
Z[AI/I:O Pr(Z(t) | k(1) = p,X(1),C,nm)Pr(k,.(t) = p | X(1),C,n)
(73a)

Wm,r (t) =

_ Pr(Z(t) | k,(t) = m,X(®),m)7, (n)c(z,m) (73b)

SO P [k, () = p,X(0),mm, (0e(Ep)
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Once we fix k,(t) = m, the probability of observing z,
is independent of the other track-measurement associ-
ations. Therefore, we may decompose Pr(Z(r) | k.(t) =
m,X(t),n) into two parts:

Pr(Z(1) | k (1) = m,X(1),n)
= Pr(Z()\z, () | X(1)\x,,(1),n) - Pr(z, (1) | k(1) = m,x,,(£),n).
(74)

Z(1)\z,(t) represents the set Z(f) without measurement
z,(1). X(1)\x,,(r) represents the set X(¢) without the el-
ements corresponding to track m. Let f,,(q) be the
PDF of the estimated target location at time ¢ for tar-
get m given X(¢). If target m is not clutter, then this
is the Kalman filter estimate, which is normally dis-
tributed. This normal distribution comes directly from
the Kalman filter in (9) and has a covariance R.(¢) equal
to that associated with the measurement. If target m is
clutter, i.e., m = 0, then f; ;(¢q) is the PDF of the clutter
at point g. Usually this is assumed to be uniformly dis-
tributed over the field of view, but we shall designate it
by u(t,q) to allow for the use of a generic continuous
distribution to be used. We shall assume that pu(z,q) is
continuous as a function of ¢g. Hence we obtain

w(t,q) m=0
N(@GHX®,R, (1)  m#0"

Because the PDFs of the measurements coming from
targets and those originating from clutter are assumed
continuous, Pr(z, | k.(f) = m,X(¢),n) may be expressed
as the probability of the observation being within a
certain region around the observation as the size of
that region approaches zero. We shall denote the size
of this region as A and the region itself, which is
centered about the observation z, as A(z,). Formulating
this probability as a limit allows us to deal with zeros
in the numerator and denominator of (74).

fnl@) = { 5)

Pr(z, | k(1) = m,X(),n) = lim Jim(@dq
A=0JgeA(z)
(76)
= ilir(l)ft’m(Zr)A. 77)

Substituting (77) and (74) into (73b) we get
_ PrZ®\z,() | X(0)\x,,(0),n) - f, ,(z,) - Am,, (n) - ¢(zE ,m)
Wm,r(t) = lim 7
A=0 %" =0 PIZO\2, () [ X(0)\x,,(),m), () A, (m)e(zf, p)
(78a)
_ PrZ)\, ) | X(0)\x,, (0. 1) - f, ,(2,) - 7, () - c(z€,m)
Zf,io Pr(Z(n)\z,(t) | X()\x,(),n)f, ,(z)7,(m)e(zE , p)
(78b)

The jump from (78a) to (78b) was accomplished by
noting that A could be factored out of the sums and
products and thus cancels in the numerator and denom-
inator.
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Equation (78b) is the solution assuming that each
target can produce only a single measurement. The
evaluation of Pr(Z(r)\z,(?) | X(#)\x,,(t),n) is combinato-
rially complex. However, under the PMHT measure-
ment model, whereby a single target can produce any
number of measurements at one time, this becomes sim-
pler. Under the PMHT measurement model, (74) sim-
plifies as follows:

Pr(Z(t) | k(1) = m,X(t),n)
= Pr(Z(t)\z,(t) | X(t),n) - Pr(z, (1) | k(1) = m.x,,(£),n).
(79)

This thus leaves a common term in (78b) that can be
cancelled, giving us:

fim@)m (W m)
S o £y @ (me(zE . p)

Substituting the appropriate distributions for f;, (z,) and
/. p(z,) gives us the form given in (17).

Wy (1) = (80)

APPENDIX B. A DERIVATION OF THE PRIOR
ASSOCIATION PROBABILITIES

T (1,(5),1)

B.1. A General Derivation of the Prior Association

Probabilities

Adopting the notation from the previous section, the
prior association probabilities are defined as

m,,(n) = Pr(k.(t) = m | X(1),C,n). (81)

In this case, we are suppressing the conditioning on X(f)
and C in the notation of 7, because, assuming that the
clutter is uniformly distributed in the viewing area, the
actual location of the target has no bearing on the so-
lution. In this section, we shall also suppress the condi-
tioning on time in order to simplify notation. We shall
derive the prior association probabilities assuming that
no gating is taking place and that all sensors have the
same field of view. It should be noted that the deriva-
tion of the 7 values are the embodiment of the PMHT
measurement model. However, the PMHT measurement
model is only an approximation. For this purpose we
shall derive the s based upon the usually more realis-
tic model that a single sensor can only observe at most
one measurement of each target at each time step.

The derivation of the 7s takes place under the con-
straint that each measurement came either from a target
or from clutter, that is:

M
PENOESE
m=0

Thus, solving for the value of the non-clutter 7 is
sufficient to tell us the value of the clutter = for a
particular n. Let us now determine the values of 7, (n)

(82)
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given that m > 0. Using the Law of Total Probability to
perform a decomposition based upon the number n,, of
targets observed we may thus write:

7, (n) 2 Pr(k, = m | n) (83a)
min(n,M)
= Z Pr(k, =m|n, n, =k)Pr(n, = k| n).
k=1
(83b)

The Law of Total Probability may be used to sim-
plify the first term of (83b) by adding conditioning upon
whether observation z, originated from a target. The
first term of (83b) may be simplified as follows:

Prk, =m|n, n, =k)
=Prk, =m|n, n, =k, z, € M)

xPr(z, e M |n, n, =k). (84)

The second term in (84) can be found by counting:
if k targets are observed, then the probability that a
particular observation is a target is simply the ratio of
the number of targets observed to the total number of
observations. We thus have

Pr(z, e M |n, n, =k) = % (85)
The first term of (84) may be decomposed using the

Law of Total Probability:
Pr(k, =m|n, n, =k, z. € M)
=Pr(k, =m|n, n, =k, z. € M, m observed)

x Pr(m observed | n, n, =k, z.€¢ M) (86a)

1
= <%> Pr(m observed | n, n, =k, z. € M).

(86b)

The notation “m observed” in the conditioning is an
abbreviation for “the mth target was observed.” The
jump from (86a) to (86b) was done by noting that if
we know that target m was observed, observation r
is a target and that k targets were observed, then by
counting, we know that the association probability is
1/k.

Let us define some additional notation. Let M be the
set of all measurements originating from a target, and p,,
be the probability of detecting target m on a particular
scan. There shall be no p, for clutter. We shall designate
the set of all p,, as P,. There are (}/) ways of choosing
which k targets are observed for each item in the sum.
Let P,(k) be the set of all products of k-combinations
from P, without repetition. For example, if k =2 and
M =3, then P,(2) = {p,p,, P1P3» P.P;} (the specific
ordering of the terms in not important). Define ¢,(y) to
be an enumerating function over P, giving us the yth
ordered element from P (k). M, (y) shall represent the
set of k targets whose detection probabilities are part of
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e, (), i.e, it is a set of observed targets. Let ¢,(y) be, if
k < M, the product of all M — k elements of P, that are
not used in e,(y), or ¢, (y) =1 if k = M. For example,
for k=2 and M =3, then e,(y) for y =1 is p,p,, for
y=21is p,ps, and for y = 3 is p,p;. Likewise e,(y) for
each y is respectively 1 — p;, 1 — p,,and 1 — p,. Let I(x)
be an indicator function that is 1 if x is nonzero.

Equation (86b) is equal to the sum of the probabili-
ties of all combinations of k observed targets such that
the mth target is observed:

Pr(m observed | n, n, =k, z, € M)

Z( D e (eI (m e M)
OPROTRC)

Combining (87) with (86b) and (85) to form (84),
we get the following solution to the first term of (83b):

Pr(k, =m|n, n, =k)
(=D emamimemon) 1
© e e, n

The second term of (83b) may be simplified using
Bayes’ Theorem:

(87)

(88)

Pr(n | ny = k)Pr(n, = k)

min(n,M)
> j=0

Pr(ny, =k |n) =

Pr(n | ny = j)Pr(ny = j)

(89)

Pr(n | ny = k) from (89) is the probability that there are
n —k clutter points. We shall designate this probability
by the function {(n —k). Pr(n, = k) from (89) is the
probability that k targets are observed and may be
written as follows:

()
Pr(no =k) = Zek()’)ék(}’)-

y=1

Substituting (90) into (89), we get
-1 (252 ek(y>ék<y))
ST ¢y — i) (252 q(y)éi(y))

oD

Substituting (91) and (88) back into (83b), we get the
following expression for m,,(n):

(90)

Pr(ng =k |n) =

M
1— Zw () m=0
j=1
T = § S er iy 530 0 (118,01 € M) -
n SO €y ) (Z( e, (y))
m#0
(92)
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B.2. Simplifying the Prior Association Probabilities

Typically, the detection probability of the targets is
unknown a priori. In this case, it is often simplest to
assume that all of the targets have the same detection
probability F,, which would be chosen based upon the
properties of the sensor and typical targets. When that
is the case, Pr(ny = k) from (90) is the same as the
probability of having k successes out of M Bernoulli
trials each with a success probability of F:

Pr(ny = k) = <Ak4 )Pg(l — P M (93)

Additionally, Pr(m Observed |n, n,=k, z.cM)
from (86b) may easily be solved by counting. With M
targets total and k targets observed, the probability of
observing any particular target is just k/M. Hence we
obtain

Pr(m Observed | n, n, =k, z, € M) = %

94)
Using these simplifications, ,,(n) is the same for all
m # 0 and (92) may be written in the following simpli-
fied form:

1 —-Mm (n) m=0

T = 4 S ke(n — k) () BE(1 — BV w0
Mn S e — i) (M) By(1 — By)M—

(95)

The probability £(k) of observing k clutter points at
time ¢ is often modeled as a Poisson probability mass
function with mean AV where A represents the mean
amount of clutter per unit volume and V is the volume
of the viewing area. Thus, we have

k
e =20 (96)
Substituting (96) into (95) for m # 0, we get
min(n,M) k k M—k
——— (MPr(1 -
By = — e OV V) S
" " min(n,M) 1 i o i ’
M Gy (B =B
97

It can be noted that the ratio of consecutive terms of
the sums in the numerator and denominator of (97) are
ratios of polynomials in k. That is, the ratio of the g,
and the g,th term of the sum in the numerator is

(k — M)(k — n) P,
<(1—EﬂAV)'

Grel _
a, k

(98)

Likewise the ratio of the a,,, and the a,th term of the
sum in the denominator is

QG _ (k—=M)k—n) B
a  k(k+1) 1PNV )’

(99)
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TABLE II
Examples of «, (n)|,, 40 and 7 when all Targets have the Same Detection Probability and a Poisson Clutter Model is Used

M ﬂ—m(n)lm#o

us

PD
nPy + (1 —Py)AV
2 P3(n—1-\V)+PyAV
P2n(n— 1)+ 2nPyA\V(1 — Py) + (1 — P,)2\2V2

<%1> +n—1

Py(n—1) 1
— Db 7 i —=——1)+n-1
Py(I—n+\WV)—\V '\ B,

Thus, following the method in [48], the sums may be
rewritten in terms of hypergeometric functions

1 —Mm,(n) m=0
. (n) = 2 Fy {I—M,I—H;OJ‘)W} .
— 7 m#0
2fo {M’n;(l—PD))\V}
(100)

The function ,Ky(a,,a,;z) in (100) is a hypergeometric
function.

Table II shows m,,(n)l,,., from (100) for one and
two targets. Previous publications, such as [3], have also
derived (100) for a single target under a Poisson clutter
model.

APPENDIX C. FURTHER SIMPLIFICATIONS TO THE

wSs

If the probability of detection is the same for all
targets, then the 7s and the ws may be simplified one
step further. Examining (95), it can be seen that all of the
m values are the same for all targets. Using the simplified
form of the ws in equation (17), we can divide the 7 term
from the numerator into the denominator to get

Some expressions for 7 as a function of the number
of targets are given in Table II.

APPENDIX D. THE KALMAN SMOOTHER

In this section, we summarize the equations for the
Kalman smoother, as described in [4]. x(#, | t,) repre-
sents the state estimate at time f; given all observa-
tions from time 1 to f,, whereby x(0 | 0) is the initial
estimate. P(z, | t,) is the covariance of the aforemen-
tioned state estimate. F(7) is the state transition matrix
and H(¢) the measurement matrix, as shown in the dy-
namic equations in (8) and (9). In keeping with the dy-
namic model, Q(?) is the process noise covariance and
R(r) the measurement noise covariance, the noises be-
ing zero-mean and white. z(¢) is the observation at time
t and R(?) is its covariance. The Kalman smoother con-
sists of a Kalman filtering step, after which a smooth-
ing step is applied. Letting I be the identity matrix,
the Kalman filter equations to calculate x(z |#) from
x(r—1]t—1) and the observations at time ¢ are given
by

W0 (8) =

xt|t—1)=F@Ox@—1|r-1), (103)
y(©) = H@OxX( [ 1 - 1), (104)
N{Zr,s(t); i’km (1) (t)7 Rr,s (t)}c(zrc:s (t)7 kr,s (t)) ( 101 )
(n, (), Dt 2, (D)eE(0),0) + Yoy N {2, (035, R, ()}e(zE,(1),m)’
Pit|t—1)=F@®OPt—1|t— DF@ + Q), (105)

This lowers the total number of multiplications needed
and it is more efficient to calculate 7 than to calculate
the 7 values for clutter and targets separately. When a
Poisson clutter model is used, as is the case in (100),
then, maintaining the notation from Section B, 7 is given
as follows:
= _T0_
Tmz0

(102a)

. PD
2o [_M’_"’ a —PD))\V}

= _M—

P
Ell-M1-n—">
20{ ’ n’(l—PD))\V]

(102b)

W) = P(t |t — DH@®)'[R@) + HOP( | 1 — DHO'T,

(106)
P | 1) =[I-W@OH]IP( |t — D[I- W@OH®)]
+ WOROW(Q), 107)
and
X(t |0 = x(t|1— 1)+ W)[z(t) ~ 5. (108)

Assuming that there are N time-periods of data avail-
able, the smoothing is performed by starting with the
final estimate x(N | N) and going backwards along the
previous estimates, smoothing them using the following
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equations

and

Ct) =Pt |OF@)Pr+ 107", (109)

X(t | N)=x(t 1)+ COIx(t + 1 | N)—x(t + 1| 1)],

(110)

Pt |N)=P@¢|)+ CO[P(t+1|N)—P@r+1]|1)]C@).
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